This commit is contained in:
Feiko Wielsma 2025-12-18 22:05:27 +00:00
parent cf51ce2dd1
commit 42d7f81e60

View file

@ -1,176 +1,150 @@
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <expected>
#include <format>
#include <fstream>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <print>
#include <ranges>
#include <string>
#include <unordered_map>
#include <utility>
#include <string_view>
#include <vector>
using Point = std::tuple<int, int, int>;
// Use a simple struct for clarity
struct Point {
int x, y, z;
// Default spaceship operator for easy comparisons if needed
auto operator<=>(const Point &) const = default;
};
struct Edge {
int u; // Index of first point
int v; // Index of second point
double dist;
};
// --- Modern Union-Find (DSU) Implementation ---
struct DSU {
std::vector<int> parent;
int groups;
explicit DSU(size_t n) : parent(n), groups(static_cast<int>(n)) {
// Fill with 0, 1, 2, ..., n-1
std::iota(parent.begin(), parent.end(), 0);
}
// Find with Path Compression
// Returns the representative ID of the set containing i
auto find(int i) -> int {
if (parent[i] == i) {
return i;
}
return parent[i] = find(parent[i]);
}
// Unite two sets. Returns true if they were different sets.
auto unite(int i, int j) -> bool {
int root_i = find(i);
int root_j = find(j);
if (root_i != root_j) {
parent[root_i] = root_j; // Link roots
groups--;
return true;
}
return false;
}
};
// --- Helper Functions ---
static auto getDistance(const Point &a, const Point &b) -> double {
return sqrt(pow(std::get<0>(a) - std::get<0>(b), 2) + pow(std::get<1>(a) - std::get<1>(b), 2) +
pow(std::get<2>(a) - std::get<2>(b), 2));
// std::hypot is cleaner (C++17) and avoids manual pow/sqrt
// For 3D: hypot(x, y, z) is C++17 specific overload
return std::hypot(a.x - b.x, a.y - b.y, a.z - b.z);
}
static auto parseInput(const std::string &filename) -> std::expected<std::vector<Point>, std::string> {
std::ifstream inputF{filename};
static auto parseInput(std::string_view filename) -> std::expected<std::vector<Point>, std::string> {
std::ifstream inputF{std::string(filename)};
if (!inputF) {
return std::unexpected{"Some file open error."};
return std::unexpected{"Could not open file."};
}
std::vector<Point> pointVec{};
std::vector<Point> points;
std::string line;
std::string puzzleLine;
while (std::getline(inputF, puzzleLine)) {
if (!puzzleLine.empty()) {
auto subParts = std::ranges::to<std::vector<std::string>>(std::views::split(puzzleLine, ','));
pointVec.emplace_back(std::stoi(subParts[0]), std::stoi(subParts[1]), std::stoi(subParts[2]));
while (std::getline(inputF, line)) {
if (line.empty()) {
continue;
}
// Modern splitting and parsing
auto parts = line | std::views::split(',') | std::views::transform([](auto &&rng) -> auto {
// Convert range to string for stoi (C++23 common_range fix)
return std::string(rng.begin(), rng.end());
}) |
std::ranges::to<std::vector<std::string>>();
if (parts.size() >= 3) {
points.emplace_back(std::stoi(parts[0]), std::stoi(parts[1]), std::stoi(parts[2]));
}
}
// std::println("pointList: {}", pointVec);
return pointVec;
return points;
}
static auto getCombinations(const std::vector<Point> &pointVec) -> std::vector<std::pair<Point, Point>> {
std::vector<std::pair<Point, Point>> result;
static auto generateSortedEdges(const std::vector<Point> &points) -> std::vector<Edge> {
std::vector<Edge> edges;
edges.reserve((points.size() * (points.size() - 1)) / 2);
result.reserve(pointVec.size() * pointVec.size());
for (size_t i = 0; i < pointVec.size(); ++i) {
for (size_t j = i + 1; j < pointVec.size(); ++j) {
result.emplace_back(pointVec[i], pointVec[j]);
// Standard triangular loop is still clearer/faster than range combinatorics here
for (size_t i = 0; i < points.size(); ++i) {
for (size_t j = i + 1; j < points.size(); ++j) {
edges.push_back(
{.u = static_cast<int>(i), .v = static_cast<int>(j), .dist = getDistance(points[i], points[j])});
}
}
return std::move(result);
// Modern Sort with Projections
// Sorts by the 'dist' member automatically
std::ranges::sort(edges, {}, &Edge::dist);
return edges;
}
static auto getDistances(const std::vector<Point> &pointVec) -> auto {
auto comparisonLamb = [](const std::pair<Point, Point> &pair1, const std::pair<Point, Point> &pair2) -> bool {
return getDistance(pair1.first, pair1.second) < getDistance(pair2.first, pair2.second);
};
std::map<std::pair<Point, Point>, double, decltype(comparisonLamb)> sortedMap(comparisonLamb);
// --- Main Logic ---
auto combinations = getCombinations(pointVec);
for (const auto &combination : combinations) {
static auto solvePartTwo(const std::vector<Point> &points) -> long long {
auto edges = generateSortedEdges(points);
DSU dsu(points.size());
// std::println("Combinations: {}:{}", combination.first, combination.second);
sortedMap[combination] = getDistance(combination.first, combination.second);
}
return sortedMap;
}
static auto doTheThing(const std::vector<Point> &pointVec, int numberToTake) -> long long {
auto distanceMap = getDistances(pointVec);
std::map<Point, int> pointToCircuitMap{};
std::unordered_map<int, std::vector<Point>> circuitMap;
int currentCircuit = 0;
for (const auto &[combination, distance] : distanceMap) {
const auto &[left, right] = combination;
// std::println("DistanceMap: {}:{} = {}", left, right, distance);
if (pointToCircuitMap.contains(left) && pointToCircuitMap.contains(right)) {
int leftCircuit = pointToCircuitMap[left];
int rightCircuit = pointToCircuitMap[right];
// std::println("Left circuit: {}. Right circuit: {}", leftCircuit, rightCircuit);
if (leftCircuit != rightCircuit) {
std::println("Merge: {} to {}", left, right);
for (const auto &rightCircuitPoint : circuitMap[rightCircuit]) {
pointToCircuitMap[rightCircuitPoint] = leftCircuit;
}
circuitMap[leftCircuit].append_range(circuitMap[rightCircuit]);
circuitMap.erase(rightCircuit);
// std::println("mergesize: {}", circuitMap[leftCircuit].size());
if (circuitMap[leftCircuit].size() >= pointVec.size()) {
return (long long)std::get<0>(left) * (long long)std::get<0>(right);
}
for (const auto &[u, v, dist] : edges) {
// Try to unite the two points
if (dsu.unite(u, v)) {
// If this connection reduced us to exactly 1 group, we are done!
if (dsu.groups == 1) {
std::println("Connected all points! Last edge: {} <-> {}", u, v);
return (long long)points[u].x * (long long)points[v].x;
}
} else if (pointToCircuitMap.contains(left)) {
int leftCircuit = pointToCircuitMap[left];
// std::println("Only left exists: {} to {}", left, right);
pointToCircuitMap[right] = pointToCircuitMap[left];
circuitMap[leftCircuit].push_back(right);
// std::println("leftsize: {}", circuitMap[leftCircuit].size());
if (circuitMap[leftCircuit].size() >= pointVec.size()) {
return (long long)std::get<0>(left) * (long long)std::get<0>(right);
}
} else if (pointToCircuitMap.contains(right)) {
int rightCircuit = pointToCircuitMap[right];
// std::println("Only right exists: {} to {}", left, right);
pointToCircuitMap[left] = pointToCircuitMap[right];
circuitMap[rightCircuit].push_back(left);
// std::println("rightsize: {}", circuitMap[rightCircuit].size());
if (circuitMap[rightCircuit].size() >= pointVec.size()) {
return (long long)std::get<0>(left) * (long long)std::get<0>(right);
}
} else {
currentCircuit++;
pointToCircuitMap[left] = currentCircuit;
pointToCircuitMap[right] = currentCircuit;
circuitMap[currentCircuit].push_back(left);
circuitMap[currentCircuit].push_back(right);
}
}
// std::println("pointToCircuitMap: {}", pointToCircuitMap);
std::println("circuitMap");
for (const auto &[circuit, pointsInCircuit] : circuitMap) {
std::println("{} : {}", circuit, pointsInCircuit);
}
auto sizesOfLists = circuitMap | std::views::transform([](const auto &kvp) -> int { return kvp.second.size(); }) |
std::ranges::to<std::vector<int>>();
std::ranges::sort(sizesOfLists, std::greater{});
auto threeLargest = std::ranges::fold_left(sizesOfLists | std::views::take(3), 1, std::multiplies{});
// std::println("{}", threeLargest);
return threeLargest;
return -1; // Should not happen if graph is connected
}
auto main() -> int {
auto testCase = parseInput("test_input");
if (testCase) {
constexpr int TEST_PUZZLE_TAKE = 10;
// Usage of std::string_view literal
auto puzzle = parseInput("puzzle_input");
auto testResult = doTheThing(*testCase, TEST_PUZZLE_TAKE);
std::println("P1 Testcase result: {}", testResult);
// auto testResultP2 = treePartTwo(*testCase);
// std::println("P2 Testcase result: {}", testResultP2);
} else {
std::print("{}\n", testCase.error());
if (!puzzle) {
std::println(stderr, "Error: {}", puzzle.error());
return 1;
}
auto realPuzzle = parseInput("puzzle_input");
if (realPuzzle) {
constexpr int REAL_PUZZLE_TAKE = 1000;
// auto realResult = doTheThing(*realPuzzle, REAL_PUZZLE_TAKE);
// std::println("P1 Real result: {}", realResult);
std::println("Loaded {} points.", puzzle->size());
auto realResultP2 = doTheThing(*realPuzzle, REAL_PUZZLE_TAKE);
std::println("P2 Real result: {}", realResultP2);
} else {
std::print("{}\n", realPuzzle.error());
}
// Part 2 Logic
auto result = solvePartTwo(*puzzle);
std::println("Part 2 Result: {}", result);
return 0;
}